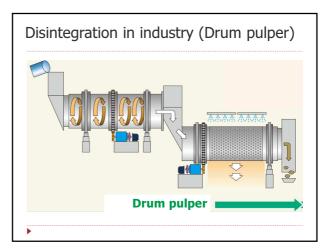
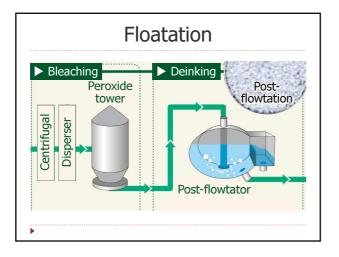
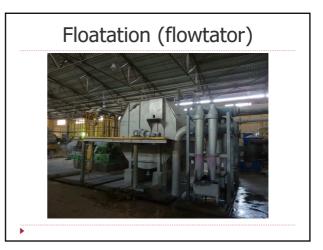
eg60411 Bio-M	laterial Science
	Toshiharu Enomae
Professor, PhD, Pape	er Device and Eco-friendly materials


B	Biomaterial Science (Schedule)				
#	Date	Content			
1	4/15	History of papermaking			
2	4/22	Pulps – Beating and fiber properties			
3	5/9, Fri	Pulps – Additives and functions			
4	5/13	Papermaking processes & interfiber bonding			
5	5/20	Paper- Structural and absorption properties			
6	5/27	Paper- Mechanical and optical properties			
7	6/3	Polysaccharide chemistry by Assoc Prof Akiko Nakagawa			
8-9	6/10, 17	Pulping science and technology by Professor Hiroshi Ohi			
10	6/24	Recent trend of paper science and technology			


Lecture information and contact


- Homepage of "Biomaterial Science (T. Enomae)"
- ▶ http://www.enomae.com/ → Handouts in lecture(講義資料)

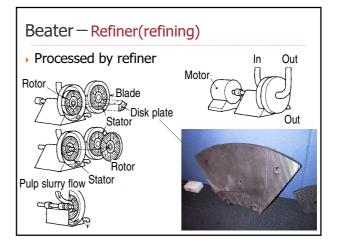
•

E-mail address
→ t@enomae.com
for any questions and visit to laboratory
(Bio-Agr. Bldg. 生農C209 or E201)

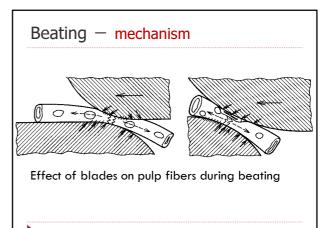
Beating (refining)

- Post-disintegration process
- Process where shear stress is applied to water-containing fibers resulting in fibrillation (formation of small filaments or fibers) on the surface and concentrically loose structure

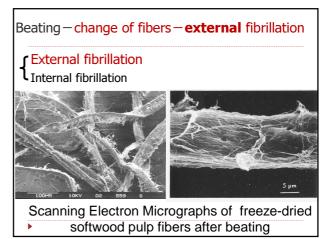
Beating (refining)

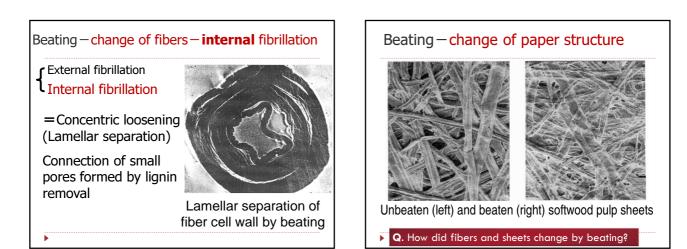

Ĕ

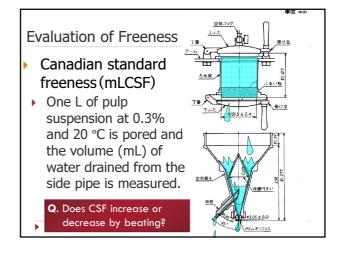
 Beating achieves large bonded area between fibers and thus higher paper strength.


Q. Why can this breaking process increase paper strength?

Difference between disintegration and beating


- Disintegration is a process to separate fibers bonded or entangled, keeping fiber characteristics
- Beating is a process to treat mechanically individual fibers, changing fiber characteristics



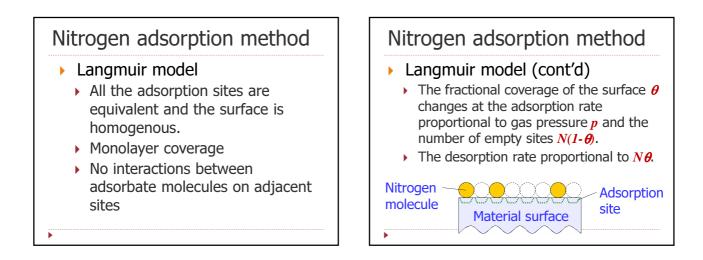


Evaluation of fiber properties

- Freeness (Drainability)
- Specific surface area
- Fiber length distribution
- Distinguishment by staining
- Fiber coarseness
- Curl index

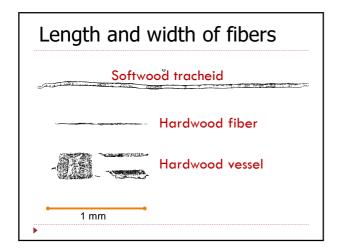
Evaluation of Freeness

Canadian standard freeness

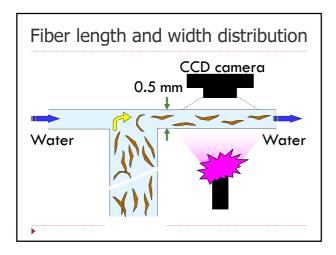

- Unbeaten pulp ca. 650 mL CSF
- Beaten pulp ca. 400 mL CSF
- Reasons why freeness (E) by beating are

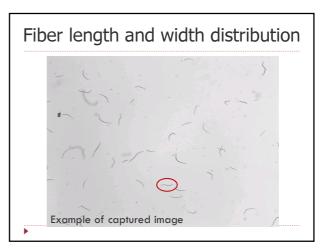
More fines (small pieces of fibers)

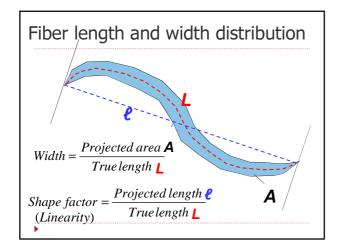
Fibrillation


make paths between fibers in a pulp mat thin, winding, and long.

	Water Retention Value (WRV)					
•	M_w : Mass of pulp after centrifugation M_d : Mass of the pulp after oven drying					
	WRV(%) =		Sample	WRV, %		
	$100 \times (M_{w} - M_{d})/M_{c}$		Bleached softwood	102		
			Bleached hardwood	101		
G	Calculate WRVs to 2		TMP	139		
	decimals in percentage.		CTMP (hardwood)	122		
	Pulp After cent.(g) Oven dried(m)	CTMP (50% HW + 50% SW)	124		
	BKP beaten 0.61 0.23	9/	Unbleached sulphite	104		
	BKP unbeaten 0.59 0.28		Recycled pulp	159		
-	BKP beaten 0.54 0.22		Non-wood pulp	204		
н	BKP unbeaten 0.45 0.24		Never-dried Kraft pulp	114		
	•		1			






Drying method	Sample	BET SSA, m ² /g
	Unbleached Spruce KP	230
Solvent exchange	Bleached Spruce KP	185
	Spruce α -cellulose	185
	Spruce GP	25
	Birch KP	129
Evaporation	Unbonded pulp fibers	1.2
at 105 °C	Paper	0.5 - 1.0

