印刷材料学

2006年6月12日 第9回(第4回江前担当分)

東京大学 大学院農学生命科学研究科 生物材料科学専攻 製紙科学研究室 江前敏晴

講義の分担			
4/ 17	江前	概説	メディアの変遷、生産量、歴史、文献
24	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
5/ 1	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
8	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
15	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
22	江前	抄紙	叩解、紙料調成、薬品、抄紙、乾燥、カレンダ
29	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
6/ 5	江前	基礎物性	紙の構造、サイズ度、吸水、吸油特性
12	江前	光学・力学物性	光学特性、力学特性
19	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
26	江前	光学・力学物性	光学特性、力学特性
7/ 3	岡山	パルプ	パルプ化/リサイクル(詳細は未定)
10	江前	紙と画像	画像の形成と印字品質評価
24	江前	実習(2回分)	実験1一抄紙、実験2一物性測定
31	江前	(休講の予定ですが、この日に実習を行うかもしれません)	

講義の情報

- ■「印刷材料学」のホームページ http://psl.fp.a.u-tokyo.ac.jp/hp/enomae/chiba2006/
- ■江前のメールアドレス enomae@psl.fp.a.u-tokyo.ac.jp

東京大学大学院農学生命科学研究科 2007年度大学院修士·博士課程学生募集

- 生物材料科学専攻/製紙科学研究室いつでも見学可能です。
 - http://web2.fp.a.u-tokyo.ac.jp/index-j.html
- 修士課程を受験する人 出願7/14~20 試験8/21, 22, 29

繊維間の結合

- 繊維結合の生成に与える水の影響
 - リボン状(扁平な)直 行する2本の繊維を 考える。交点は正方 形になり、1辺の長さ をLとする。乾燥が進 んで繊維間距離が 1μmになると、どの 程度の収縮応力が 働くか?
 - このように繊維間で 引き合う力を Campbell (キャンベル)効果と呼ぶ。

紙の構造と物性

- ■紙の物性
 - ■構造
 - ■力学
 - ■光学
 - ■液体との相互作用
 - ■サイズ度
 - ■吸水・吸油特性

■ 毛管(円管)内にできる液 体のメニスカスに作用す る力

■円管内定常流の式

l: 毛管長さ r: 毛管半径 η: 液体の粘度 Q:流量(体積速度)

(Hagen-Poiseulleの式)

Hagen-Poiseulleの式に右図 の条件を代入するとLucas-Washburnの式が得られる。

塗工層空隙率が影響する物性

■吸液速度

- Lucas-Washburnの式において、図 σ_n 本の毛管集合体のモデルでは V=n $\pi r^2 l$
- 毛管集合体のモデルでは空隙率 ϕ は Lucas-Washburnの式 $\phi=n$ $\pi r^2/A$
- 単位面積あたり吸液量V/Aは、

 $R\gamma\cos\theta$

■多孔質体としての密度

■軽量化できる。

紙の構造と物性

- ■紙の物性
 - ■構造
 - ■力学
 - ■光学
 - ■液体との相互作用
 - ■サイズ度
 - ■吸水・吸油特性

紙の構造的なパラメータ

- ■坪量(g/m²)
 - ■1m²あたりの標準調湿条件下での質量
- ■厚さ(μm)
 - ■2枚の金属板ではさんだときの距離
- ■密度(q/cm³)
- ■比容積(cm³/g)
- ■坪量/厚さ
- ■密度の逆数
- ■平滑度(表面粗さ)
 - ■空気漏洩式と表面形状測定
- ■透気度
 - ■空気の透過速度

紙の構造-基本物性

- · 坪量(g/m²)
 - 20°C 50%r.h.における1m²あたりの質量(g)
 - 105℃で恒量となるまで乾燥すると絶乾坪量
- 厚さ
 - 2つの平行な円形加圧面で挟む構造のマイクロメータを使い、50kPa又は100kPaの加圧下で測定
 - バルク厚さ(10枚重ね)と単一シート厚さ
 - 表面の凹凸も含めた厚さであるので厚めに測定される。
- 密度
 - 坪量/厚さで、単位はg/cm³である。Kg/m³が使われることもある。

紙の構造-平滑性(表面粗さ)

- ■空気漏洩式
 - ■平滑な金属面と紙表面が接触したときにできる隙間を空気が漏れ出る速度で表現
- ■表面形状測定(顕微鏡を利用)
 - ■測定方式
 - ■触針式
 - ■走査型プローブ顕微鏡
 - ■共焦点式光学顕微鏡
 - ■干渉式光学顕微鏡
 - ■多検出器走査電子顕微鏡
 - ■粗さの表現方法

紙の構造-平滑度

- · 空気漏洩式
 - プリントサーフ粗さ(μm)
 - ベック平滑度、王研式平滑度(秒)

紙の構造-平滑度

・空気漏洩式の理論

- ハーゲンポアゼイユの流れ

$$Q = \frac{\pi \Delta P}{8\mu} \frac{r^4}{l}$$

Q:空気の体積速度 ΔP :圧力差

μ: 空気の粘度 r:円管半径

l:円管長さ

紙の構造-平滑度

プリントサーフ粗さのモデル図

Fig. 3 Schematic diagram of a channel for air leak in the PPS model.

紙の構造-平滑度

- プリントサーフ粗さと王研式平滑度の比較

プリントサーフ粗さ(μm)	王研式(ベック)平滑度(秒)
$G_3 = \left(\frac{12\mu lQ}{w\Delta P}\right)^{\frac{1}{3}}$	$T_{B} = \frac{8\mu V l}{\pi \Delta P r^{4}} = \frac{8\mu V}{\pi (P_{c} - P)} \frac{L_{0}}{R_{0}^{4}}$
G3: 平均間隙[距離]	T _B : 王研式平滑度[時間]
μ: 空気の粘度	<i>μ</i> : ←
1:金属面の長さ	l :ポア長さ, $L_{ heta}$:連結管の長さ
Q: 空気の体積速度	V :空気の体積 = $Q imes T_B$
w: 金属面の幅	$r:$ ポア半径, $R_{o}:$ 連結管の長さ
△P:圧力差	$ extit{△}P: extstyle extstyle$

表面形状の式

- ■表面形状の2次元、3次元的測定
- ■表現する式
- 傾きを補正のために基準直線(又は面)を、その上下にできる 面積(体積)が等しくなるように定め、そこからの各点までの距 離を直線xに対する距離y、xy面に対する距離zとして求める。

■中心線平均粗さRa

$$R_a = \frac{1}{\ell} \int_0^\ell y |dy|$$

$$R_a = \frac{1}{\ell_x \ell_y} \int_0^{\ell_y} \int_0^{\ell_x} |z(x, y)| dx dy$$

■自乗平均平方根粗さRMS

$$RMS = \sqrt{\frac{1}{\ell} \int_0^\ell y^2 dy}$$

$$RMS = \sqrt{\frac{1}{\ell_x \ell_y} \int_0^{\ell_y} \int_0^{\ell_x} z(x, y)^2 dx dy}$$

